
Partitioning Sparse Rectangular Matrices for

Parallel Processing?

Tamara G. Kolda

Computer Science and Mathematics Division, Oak Ridge National Laboratory,
Oak Ridge, TN 37831-6367. kolda@msr.epm.ornl.gov.

Abstract. We are interested in partitioning sparse rectangular matrices
for parallel processing. The partitioning problem has been well-studied in
the square symmetric case, but the rectangular problem has received very
little attention. We will formalize the rectangular matrix partitioning
problem and discuss several methods for solving it. We will extend the
spectral partitioning method for symmetric matrices to the rectangular
case and compare this method to three new methods | the alternating
partitioning method and two hybrid methods. The hybrid methods will
be shown to be best.

1 Introduction

Organizing the nonzero elements of a sparse matrix into a desirable pattern is
a key problem in many scienti�c computing applications, particularly load bal-
ancing for parallel computation. In this paper we are interested in ordering the
nonzeros of a given matrix into approximate block diagonal form via permuta-
tions. This problem corresponds directly to the partitioning problem in graph
theory, and so is often referred to as matrix partitioning.

The partitioning problem has been well-studied in the symmetric case [1,
2, 4, 11, 12, 13, 14, 15, 16, 21, 22, 23]. The rectangular partitioning problem,
however, has received very little attention; the primary reference in this area
is Berry, Hendrickson, and Raghavan [3] on envelope reduction for hypertext
matrices.

Let A denote a sparse rectangular m�n matrix. We will assume throughout
that we are working with pattern (0-1) matrices, but the results and methods can
easily be extended to nonnegative weighted matrices. Our goal is to partition A
into a block 2� 2 matrix so that most of the nonzeros are on the block diagonal
and so that each block diagonal has about the same number of nonzeros. In
other words, we wish to �nd permutation matrices P and Q such that

B � PAQ =

�
B11 B12

B21 B22

�
;

? This work was supported by the Applied Mathematical Sciences Research Program,
O�ce of Energy Research, U.S. Department of Energy, under contract DE-AC05-
96OR22464 with Lockheed Martin Energy Research Corporation.



where B12 and B21 are as sparse as possible and the block rows or block columns
each have about the same number of nonzeros. In order to avoid a trivial solution
(e.g., B11 = A), we require that B11 have p rows and q columns where p is some
integer between 1 andm�1 and q is some integer between 1 and n�1. The values
p and q may or may not have been chosen in advance; typically we will want
p � m=2 and q � n=2 to maintain load balance. If there exists P and Q such
that B12 and B21 are identically zero, then we say that A is block diagonalizable.
If we wish to partition A in a block 2k � 2k matrix, we can recursively partition
the block diagonals.

The matrix partitioning problem is equivalent to the edge-weighted graph
partitioning problem: Given an undirected edge-weighted graph, partition the
nodes into two sets of given sizes such that the sum of the weights of the edges
that pass between the two sets is minimized. The graph partitioning problem
is a well-known NP-complete problem (see problem ND14 on p. 209 in Garey
and Johnson [6]). A rectangular m� n matrix corresponds to a bipartite graph
[3] with m left nodes and n right nodes. There is an edge between left node i
and right node j if aij is nonzero, and the weight of the edge is one. See Fig. 1
for an illustration. Suppose that we partition A so that the union of the �rst
p rows and the �rst q columns form one partition and the remaining rows and
columns form the other partition. The edges passing between the two partitions
correspond to the nonzeros in the o�-diagonal blocks of the partitioned matrix.

1

2

3

4

5

1 2 3 1

2

3

4

5

1

2

3

Fig. 1. The bipartite graph of a rectangular matrix.

Observe that the graph of A is disconnected if and only if the matrix A is
block diagonalizable. Throughout we will assume that the graph of A is con-
nected. If it is not, we will re-order the matrix so that it is block diagonalized
with the blocks in decreasing order of size. We will only work with components
that cross the boundary of the desired partition. In the discussion of the theory,
we will assume that the graph of A is connected.

Many iterative methods, e.g., LSQR[20] require matrix-vector and matrix-
vector-transpose multiplies with rectangular matrices. In Sect. 2 we will describe
how to implement these kernels to take advantage of the partitioned matrix.

In Sect. 3, we will present several algorithms for the rectangular partitioning
problem. We will discuss the well-known spectral partitioning method and show



how it can be applied to this problem. We will also introduce a new alternating
partitioning method as well as two hybrid strategies.

In Sect. 4, we will compare the various partitioning methods, and show that
the hybrid methods are the best.

2 Parallel Matrix-Vector Multiplication

We propose the following parallel implementations for the matrix-vector and
matrix-transpose-vector multiplications. Suppose that we have r = 2k proces-
sors. We partition A into a block r � r matrix,

A =

2
6664
A11 A12 � � � A1r

A21 A22 � � � A2r

...
...

. . .
...

Ar1 Ar2 � � � Arr

3
7775 ;

so that most of the nonzeros are in the diagonal blocks. Here block (i; j) is of
size mi � nj where

P
imi = m and

P
j nj = n.

Matrix-Vector Multiply (Block Row). We do the following on each processor to
compute y = Ax:

1. Let i denote the processor id. This processor owns the ith block row of A,
that is,

�
Ai1 Ai2 � � � Aip

�
, and xi, the ith block of x of length ni.

2. Send a message to each processor j 6= i for which Aji 6= 0. This message
contains only those elements of xi corresponding to nonzero columns in Aji.

3. While waiting to receive messages, the processor computes the contribution

from the diagonal matrix block, y
(i)
i = Aiixi. The blockAii, while still sparse,

may be dense enough to improve data locality.
4. Then, for each j 6= i such that Aij is nonzero, a message is received containing

a sparse vector �xj that only has the elements of xj corresponding to nonzero

columns in Aij , and y
(j)
i = Aij �xi, is computed. (We assume that processor i

already knows which elements to expect from processor j.)

5. Finally, the ith block of the product y is computed via the sum yi =
P

j y
(j)
i .

Block yi is of size mi.

Matrix-Transpose-Vector Multiply (Block Row). To compute z = AT v, each
processor does the following:

1. Let i denote the processor id. This processor owns vi, the ith block of v of
size mi, and the ith block row of A.

2. Compute z
(i)
j = AT

ijvi, for each j 6= i for which Aij 6= 0. Observe that the

number of nonzeros in z
(i)
j is equal to the number of nonzero rows in AT

ij ,

i.e., the number of nonzero columns in Aij . Send the nonzero1 elements of

z
(i)
j to processor j.

1 Here we mean any elements that are guaranteed to be zero by the structure of Aij .
Elements that are zero by cancellation are still communicated.



3. While waiting to receive messages from the other processors, compute the

diagonal block contribution z
(i)
i = AT

iivi.

4. From each processor j such that Aji 6= 0, receive �z
(j)
i which contains only the

nonzero elements of z
(j)
i . (Again, we assume that processor i already knows

which elements to expect from processor j.)

5. Compute the ith component of the product, zi = z
(i)
i +

P
j 6=i �z

(j)
i . Block zi

is of size ni.

Block column algorithms are analogous to those given for the block row
layout. Observe that sparse o�-diagonal blocks result in less message volume.
See Hendrickson and Kolda [9] for more detail on the algorithm and for more
details on potential applications.

3 Algorithms for the Rectangular Partitioning Problem

Here we will discuss how the well-known spectral method can be applied to the
rectangular problem and introduce a new method that can be used on its own
or in combination with other methods. The spectral method will be used as a
basis for comparison to the new methods in Sect. 4.

3.1 Spectral Partitioning

In the symmetric problem, spectral partitioning based on the Fiedler vector is
a well-known technique; see, for example, Pothen, Simon, and Liou [21]. Many
people have studied the e�ectiveness of spectral graph partitioning; for exam-
ple, Guattery and Miller [8] show that spectral partitioning can be bad, while
Spielman and Teng [23] show that it can be good.

One natural way to approach the rectangular problem is to symmetrize the
matrix A, yielding the (m+ n)� (m+ n) matrix

~A =

�
0 A
AT 0

�
;

and apply spectral partitioning to the symmetrized matrix. This approach is
used by Berry et al. [3]. Note that the graphs of ~A and A are the same.

In order to apply spectral partitioning, we compute the Laplacian of ~A,

L = D � ~A ;

where D = diagfd1; d2; : : : ; dm+ng and di =
P

j ~aij . The matrix L is symmetric
and semi-positive de�nite; furthermore, the multiplicity of the zero eigenvalue
must be one since we are assuming that the graph of A, and hence of ~A, is
connected [5]. Let w denote the Fiedler vector of L, that is, the eigenvector
corresponding to the smallest positive eigenvalue of L. Let u denote the �rst m
and v the last n elements of w, and sort the elements of u and v so that

ui1 � ui2 � � � � � uim ;
vj1 � vj2 � � � � � vjn :



Then fi1; i2; : : : ; img and fj1; j2; : : : ; jng de�ne the row and column partitions
respectively. In other words, assign rows i1; i2; : : : ; ip and columns j1; j2; : : : ; jq to
the �rst partition and the remaining rows and columns to the second partition.
Note that the ordering is independent of p and q. This means that the values of
p and q may be �xed in advance as something like dm=2e and dn=2e respectively,
or they may be chosen after the ordering has been computed to ensure good load
balancing.

In Sect. 4 we will use this method as a basis for comparison for our new
methods.

3.2 The Alternating Partitioning Method

Rather than trying to compute both the row and column partitions simultane-
ously as is done in the spectral method, the new method proposed in this section
focuses on one partition at a time, switching back and forth. This method is de-
rived from the Semi-Discrete Matrix Decomposition, a decomposition that has
been used for image compression [19] and information retrieval [17, 18].

Before we describe the method, we will re-examine the problem. If we let I
denote the set of row indices that are permuted to a value less than or equal to
p and correspondingly let Ic denote the set of row indices permuted to a value
greater than p and de�ne the set J in an analogous way for the columns, then
we can write the rectangular partitioning problem as a maximization problem,

max
I;J

X
i2I

j2J

aij +
X
i2Ic

j2J c

aij �
X
i2I

j2Jc

aij �
X
i2Ic

j2J

aij ;

s.t. I � f1; 2; � � � ;mg ; J � f1; 2; � � � ; ng ;
jIj = p; jJ j = q :

(1)

Here the objective function is the sum of the nonzeros on the block diagonal
minus the sum of the elements o� the block diagonal.

We can then rewrite this problem as an integer programming problem. Let x
be a vector that de�nes the set membership for each row index; that is, xi = 1
if row i is in I, and xi = �1 if row i is in Ic, and let the vector y be de�ned in
an analogous way for the columns. Then we can rewrite problem (1) as

max xTAy ;
s.t. xi = �1 ; yj = �1 ;

xT e = 2p�m ; yT e = 2q � n ;
(2)

where e denotes the ones vector whose length is implied by the context.
Although we cannot solve (2) exactly, we can use an alternating method to get

an approximate solution. We �x the partition for, say, the right nodes (y), and
then compute the best possible partition for the left nodes (x). Conversely, we
then �x the partition for the left nodes, and compute the best possible partition
for the right nodes, and so on.



Suppose that we have �xed the partition for the right nodes. To determine
the best partition of the left nodes, we need to solve

max xT s ;
s.t. xi = �1 ;

xT e = 2p�m ;
(3)

where s = Ay is �xed. The solution to this problem can be computed exactly. If
we sort the entries of s so that

si1 � si2 � � � � � sim ;

then x de�ned by xi1 = xi2 = � � � = xip = +1 and xip+1 = xip+2 = � � � = xim =
�1 is the exact solution to (3). Observe that the ordering of the elements of s
does not depend on the value for p. If p has not been speci�ed ahead of time,
we would choose p to ensure load balancing. However, note that then p may be
changing every iteration. An analogous procedure would be employed to �nd y
when x is �xed.

Assuming p and q are �xed, each time we �x one side's partition and then
compute the other, we are guaranteed that the value of the objective will never
decrease. In other words, let x(k) and y(k) denote the partitions at the kth

iteration of the method, and let fk denote the objective value, x(k)
T
Ay(k); then

fk+1 � fk for all k. In the experiments presented in this paper, the method
terminates when the objective value stops increasing. Alternatively, the method
could terminate after at most some �xed number of iterations.

This method is called the alternating partitioning (AP) method and is speci�c
to the rectangular problem since we are dealing with both row and column
partitions and so we can alternate between working with one and then the other.
In the symmetric case, we are only dealing with one partition.

We have not yet speci�ed how to choose the �rst partition when we start
the iterations, but that choice is important. In the standard method, we simply
use the identity partition; however the next subsection will present two hybrid
methods that use other techniques to generate a starting partition.

3.3 Hybrid Alternating Partitioning Methods

Since the alternating partitioning method is a greedy method, its key to success
is having a good starting partition. Here we propose two possibilities.

Hybrid Spectral { Alternating Partitioning Method. This method uses the par-
tition generated by the spectral method described in Sect. 3.1 as the starting
partition for the alternating partitioning method.

Hybrid RCM { Alternating Partitioning Method. The Reverse Cuthill-McKee
(RCM) method is not generally used as a partitioning method, but it generates
a good inexpensive starting partition for the alternating partitioning method.



RCM is typically used for envelope reduction on symmetric matrices and
is based on the graph of the matrix. Essentially, the method chooses a start-
ing node and labels it 1. It then consecutively labels the nodes adjacent to it,
then labels the nodes adjacent to them, and so forth. Once all the nodes are
labelled, the ordering is reversed (hence the name). See George and Liu [7] for
further discussion. In the nonsquare or nonsymmetric case, we apply RCM to
the symmetrized matrix as was done by Berry et al. [3].

4 Experimental Results

In this section we compare the various partitioning methods presented in Sect. 3
on a collection of matrices listed in Table 1. These matrices were obtained from
Matrix Market 2 with the exception of ccealink, man1, man2, and nhse400which
were provided by Michael Berry and are those used in Berry et al. [3]. These
matrices range in size from 100� 100 to 4000� 400. All of the square matrices
are structurally nonsymmetric.

Table 1. Rectangular test matrices.

Matrix Rows Columns Nonzeros

bfw782a 782 782 7514

ccealink 1778 850 2388

gre 115 115 115 421

illc1033 1033 320 4732

impcol a 207 207 572

impcol c 137 137 411

impcol d 425 425 1339

impcol e 225 225 1308

man1 1853 625 3706

man2 1426 850 2388

nhse400 4233 400 5119

nnc261 261 261 1500

watson3 124 124 780

west0132 132 132 414

west0156 156 156 371

west0479 479 479 1910

utm300 300 300 3155

Tables 2, 3, and 4 show the results of partitioning the rectangular matrices
into block 2�2, 8�8, and 16�16 matrices. In these experiments, all the matrices
were converted to pattern (0-1) matrices, but we could have converted them to
nonnegatively weighted matrices instead. When partitioning into a block 2 � 2

2 http://math.nist.gov/MatrixMarket/



matrix, we choose p = dm=2e and q = dn=2e. (Alternatively, we could compute
p and q on the y.) When partitioning into more blocks, we �rst partition into
a block 2� 2 matrix and the recursively partition the diagonal blocks into block
2� 2 matrices until the desired number of blocks is reached.

The tables are formatted as follows. Each row corresponds to a given ma-
trix whose name is speci�ed in the �rst column. The second column lists the
number of nonzeros outside of the block diagonal in the original matrix. The
number of nonzeros outside of the block diagonal is equivalent to the number
of edge cuts in the graph partitioning problem. Columns 3 { 6 list the number
of nonzeros outside the block diagonal after applying the method listed in the
column header to the original matrix. The number in parentheses is the time in
seconds it took to compute the ordering. All timings were done in MATLAB.
Spectral partitioning requires the second eigenvector corresponding to the second
smallest eigenvalue, and this was computed using the MATLAB EIGS routine.
(Note that EIGS has a random element to it, so the results for the spectral and
hybrid spectral { alternating partitioning method cannot be repeated exactly.)
The alternating partitioning method was implemented using our own code. The
MATLAB SYMRCM routine was used to compute the RCM ordering.

Table 2. Approximate block diagonalization of rectangular matrices into block 2 � 2
matrices.

Nonzeros outside of Block 2� 2 Diagonal

Matrix Orig Spectral AP RCM-AP Spec-AP

bfw782a 2438 229 (27.52) 232 (2.04) 383 (2.38) 147 (27.74)

ccealink 324 384 (14.92) 349 (1.99) 144 (2.50) 106 (15.33)

gre 115 104 45 (1.14) 77 (0.12) 48 (0.18) 40 (1.44)

illc1033 2336 588 (16.71) 345 (1.28) 524 (1.57) 385 (16.61)

impcol a 59 9 (1.90) 25 (0.19) 24 (0.26) 8 (1.94)

impcol c 46 25 (1.25) 26 (0.14) 31 (0.16) 22 (1.24)

impcol d 48 35 (6.74) 38 (0.45) 20 (0.57) 25 (6.79)

impcol e 152 26 (2.53) 46 (0.26) 49 (0.32) 24 (2.58)

man1 803 202 (46.68) 703 (1.99) 211 (2.75) 169 (46.13)

man2 759 189 (33.12) 382 (1.62) 204 (2.04) 150 (33.31)

nhse400 213 186 (86.05) 169 (3.07) 74 (4.35) 60 (83.67)

nnc261 75 73 (3.66) 71 (0.31) 73 (0.38) 71 (4.70)

watson3 157 87 (1.24) 119 (0.17) 77 (0.20) 77 (1.26)

west0132 87 33 (1.16) 36 (0.14) 30 (0.19) 29 (1.17)

west0156 231 7 (1.25) 37 (0.16) 18 (0.18) 7 (1.27)

west0479 755 117 (8.64) 191 (0.58) 142 (0.73) 112 (8.70)

utm300 266 215 (5.38) 266 (0.61) 240 (0.75) 215 (5.31)

We are using the spectral method as a basis for comparison for our new
methods. Let us �rst consider the alternating partitioning method. In the 2� 2
and 8�8 tests, the spectral method does better than the alternating partitioning



Table 3. Approximate block diagonalization of rectangular matrices into block 8 � 8
matrices.

Nonzeros outside of Block 8� 8 Diagonal

Matrix Orig Spectral AP RCM-AP Spec-AP

bfw782a 3872 832 (55.35) 1236 (5.02) 963 (5.72) 804 (55.03)

ccealink 684 991 (36.90) 813 (5.61) 286 (6.37) 216 (32.05)

gre 115 265 131 (3.92) 146 (0.53) 128 (0.64) 118 (4.26)

illc1033 4066 2474 (31.35) 1640 (3.17) 1398 (3.83) 1399 (32.72)

impcol a 269 56 (5.66) 67 (0.73) 83 (0.88) 48 (5.70)

impcol c 170 108 (4.19) 106 (0.57) 94 (0.66) 85 (4.14)

impcol d 260 171 (15.02) 167 (1.37) 163 (1.82) 128 (15.43)

impcol e 724 303 (6.70) 173 (0.91) 153 (1.10) 137 (6.81)

man1 1492 518 (82.38) 1249 (4.91) 578 (6.49) 433 (83.09)

man2 2207 449 (59.49) 904 (3.90) 524 (4.95) 326 (60.79)

nhse400 1001 1493 (143.98) 1142 (7.99) 227 (10.25) 234 (148.47)

nnc261 596 339 (9.23) 398 (1.04) 353 (1.27) 341 (9.99)

watson3 350 285 (4.02) 236 (0.56) 234 (0.71) 232 (4.40)

west0132 308 97 (4.01) 111 (0.57) 104 (0.67) 82 (4.14)

west0156 337 63 (4.13) 73 (0.59) 53 (0.76) 42 (4.17)

west0479 1309 427 (18.58) 420 (1.65) 413 (2.08) 274 (18.75)

utm300 1359 991 (12.19) 1211 (1.59) 830 (1.98) 888 (12.96)

Table 4. Approximate block diagonalization of rectangular matrices into block 16�16
matrices.

Nonzeros outside of Block 16� 16 Diagonal

Matrix Orig Spectral AP RCM-AP Spec-AP

bfw782a 4320 1387 (61.83) 1951 (6.28) 1429 (7.17) 1361 (62.18)

ccealink 904 1195 (38.56) 1053 (7.27) 358 (7.96) 266 (32.63)

gre 115 291 171 (6.45) 195 (0.92) 162 (1.06) 153 (6.35)

illc1033 4378 2776 (33.45) 2194 (4.12) 1985 (4.92) 1920 (37.83)

impcol a 413 125 (8.49) 115 (1.18) 127 (1.46) 100 (8.45)

impcol c 252 160 (8.15) 157 (1.04) 143 (1.16) 135 (7.26)

impcol d 444 289 (18.86) 278 (1.96) 305 (2.50) 243 (19.83)

impcol e 976 615 (9.95) 474 (1.55) 471 (1.86) 450 (9.84)

man1 1837 796 (91.35) 1479 (6.21) 699 (7.98) 602 (91.92)

man2 2519 596 (66.93) 1086 (5.06) 671 (6.27) 456 (69.61)

nhse400 1594 1751 (161.72) 1795 (10.33) 331 (12.64) 428 (156.84)

nnc261 890 556 (12.69) 558 (1.53) 538 (1.87) 528 (13.08)

watson3 415 367 (6.39) 289 (0.99) 297 (1.18) 300 (6.90)

west0132 376 162 (6.34) 152 (0.97) 141 (1.24) 132 (6.88)

west0156 351 92 (8.11) 87 (1.04) 74 (1.23) 70 (6.43)

west0479 1618 640 (22.55) 541 (2.33) 477 (2.84) 414 (22.62)

utm300 1584 1504 (15.40) 1401 (2.21) 1268 (2.70) 1268 (15.95)



method on the majority of matrices, but on the 16 � 16 tests, the alternating
partitioning method does better than spectral partitioning 11 out of 17 times.
In terms of time, the alternating partitioning method is approximately 10 times
faster than the spectral method.

The hybrid RCM-AP method is overall better than the alternating parti-
tioning method. It outperforms the spectral method in the majority of matrices
in the 8 � 8 and 16 � 16 tests. This method is the best overall an average of
2.3 times for each block size. The time for the hybrid RCM-AP method is only
slightly more than that for the alternating partitioning method, and still about
10 times less than that for the spectral method.

For all three block sizes, we see that the hybrid spectral-AP method is the
best overall in terms of reducing the number of nonzeros outside the block diag-
onal. This method is only slightly more expensive than the spectral method in
terms of time and yields consistently better results. Sometimes the improvement
is remarkable; see, for example, ccealink in all four tables. Unfortunately, the
spectral and hybrid spectral-AP methods are very expensive in terms of time
since they require the computation of some eigenpairs.

Figure 2 shows the e�ect of di�erent partitioning strategies on the west0156
matrix in the block 8� 8 case.

Original Matrix Spectral Partitioning Alternating Partitioning

Hybrid RCM-AP Hybrid Spectral-AP

Fig. 2. Comparison of block 8� 8 partitions on west0156.



Given these results, we recommend the hybrid spectral-AP method when
quality is the top concern and the hybrid RCM-AP method when both time and
quality matter.

5 Conclusions

In this work we introduced the rectangular matrix partitioning problem which
is an extension of the symmetric matrix partitioning problem. The rectangular
partitioning problem has a number of potential uses in iterative methods such
as LSQR.

We introduced the alternating partitioning method as well as two hybrid
methods and compared them with a rectangular version of the spectral par-
titioning method. The hybrid methods compared extremely favorably, and we
recommend these as the methods of choice. The hybrid spectral-AP method is
the overall best when partition quality is more important than the time to com-
pute the partition, and the hybrid RCM-AP method is recommended when time
is more important.

In other work [9, 10], this author and Bruce Hendrickson explore the multi-
level method which is known to work very well for the symmetric partitioning
problem [2, 11, 12, 13, 15]. We develop a multilevel method speci�c for bipartite
graphs with various re�nement strategies including the alternating partition-
ing method and a version of Kernighan-Lin for bipartite graphs. Eventually, we
would also like to examine handling four or eight diagonal blocks directly [1, 11].

Acknowledgments

The author is indebted to Bruce Hendrickson and Dianne O'Leary for many
helpful discussions. The author also thanks Eduardo D'Azevedo, Chuck Romine,
and the anonymous referees for their reviews, and Mike Berry for providing data.

References

[1] Charles J. Alpert and So-Zen Yao. Spectral partitioning: The more eigenvectors,
the better. In 32nd ACM/IEEE Design Automation Conference, pages 195{200,
1995.

[2] Stephen T. Barnard and Horst D. Simon. A fast multilevel implementation of
recursive spectral bisection for partitioning unstructured problems. Concurrency:
Practice and Experience, 6:101{117, 1994.

[3] Michael W. Berry, Bruce Hendrickson, and Padma Raghavan. Sparse matrix
reordering schemes for browsing hypertext. In James Renegar, Michael Shub,
and Steve Smale, editors, The Mathematics of Numerical Analysis, volume 32 of
Lectures in Applied Mathematics, pages 99{122. American Mathematical Society,
1996.

[4] Julie Falkner, Franz Rendl, and Henry Wolkowicz. A computational study of
graph partitioning. Math. Prog., 66:211{239, 1994.



[5] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical
J., 23:298{305, 1973.

[6] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, New York,
1979.

[7] Alan George and Joseph W. Liu. Computer Solution of Large Sparse Positive
De�nite Systems. Prentice-Hall Series in Computational Mathematics. Prentice-
Hall, Englewood Cli�s, 1981.

[8] Stephen Guattery and Gary L. Miller. On the quality of spectral seperators.
Accepted for publication in SIAM J. Matrix Anal. Appl., 1997.

[9] Bruce Hendrickson and Tamara G. Kolda. Partitioning nonsquare and nonsym-
metric matrices for parallel processing. In preparation, 1998.

[10] Bruce Hendrickson and Tamara G. Kolda. Partitioning sparse rectangular matri-
ces for parallel computations of Ax and A

T
v. Accepted for publication in Proc.

PARA98: Workshop on Applied Parallel Computing in Large Scale Scienti�c and
Industrial Problems, 1998.

[11] Bruce Hendrickson and Robert Leland. Multidimensional spectral load balancing.
Technical Report 93-0074, Sandia Natl. Lab., Albuquerque, NM, 87185, 1993.

[12] Bruce Hendrickson and Robert Leland. An improved spectral graph partition-
ing algorithm for mapping parallel computations. SIAM J. Sci. Stat. Comput.,
16:452{469, 1995.

[13] Bruce Hendrickson and Robert Leland. A multilevel algorithm for partitioning
graphs. In Proc. Supercomputing '95. ACM, 1995.

[14] Bruce Hendrickson, Robert Leland, and Rafael Van Driessche. Skewed graph
partitioning. In Proc. Eighth SIAM Conf. on Parallel Processing for Scienti�c
Computing. SIAM, 1997.

[15] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
paritioning irregular graphs. Technical Report 95-035, Dept. Computer Science,
Univ. Minnesota, Minneapolis, MN 55455, 1995.

[16] George Karypis and Vipin Kumar. Parallel multilevel graph partitioning. Techni-
cal Report 95-036, Dept. Computer Science, Univ. Minnesota, Minneapolis, MN
55455, 1995.

[17] Tamara G. Kolda. Limited-Memory Matrix Methods with Applications. PhD
thesis, Applied Mathematics Program, Univ. Maryland, College Park, MD 20742,
1997.

[18] Tamara G. Kolda and Dianne P. O'Leary. A semi-discrete matrix decomposition
for latent semantic indexing in information retrieval. Accepted for publication in
ACM Trans. Information Systems, 1997.

[19] Dianne P. O'Leary and Shmuel Peleg. Digital image compression by outer product
expansion. IEEE Trans. Comm., 31:441{444, 1983.

[20] Christopher C. Paige and Michael A. Saunders. LSQR: An algorithm for sparse
linear equations and sparse least squares. ACM Trans. Mathematical Software,
8:43{71, 1982.

[21] Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning sparse matrices
with eigenvectors of graphs. SIAM J. Matrix Anal. Appl., 11:430{452, 1990.

[22] Horst D. Simon. Partitioning of unstructured problems for parallel processing.
In Computing Systems in Engineering, number 2/3, pages 135{148. Pergammon
Press, 1991.

[23] Daniel A. Speilman and Shang-Hua Teng. Spectral partitioning works: Planar
graphs and �nite element meshes. Unpublished manuscript, 1996.


